

Prof. Dr. Regina Palkovits

(*29.05.1980, verheiratet, zwei Kinder: 2011, 2013)

RWTH Aachen University

Institut für Technische und Makromolekulare Chemie

Lehrstuhl für Heterogene Katalyse und Technische Chemie

Worringerweg 2, D-52074 Aachen

Telefon: +49 241 80 26497, palkovits@itmc.rwth-aachen.de

ORCID: 0000-0002-4970-2957

URL for web site: http://www.itmc.rwth-aachen.de/@PalkovitsLab; Regina Palkovits - Google Scholar

Vision der Arbeitsgruppe und Beitrag und Bezug zu catalaix

Mit heterogener Katalyse und Materialdesign als Kernkompetenz gehen wir globale Herausforderungen durch die Entwicklung nachhaltiger chemo- und elektrokatalytischer Umwandlungen und Prozesse an. An der Schnittstelle von Chemie, Chemieingenieurwesen und Materialwissenschaften konzentrieren wir uns auf die Verwertung von Biomasse, CO2 und Kunststoffen in neuartigen Wertschöpfungskreisläufen sowie die dafür notwendige Erzeugung und Nutzung von Wasserstoff aus erneuerbaren Quellen. In catalaix werden wir unser gesamtes Katalyse-Know-how in die gemeinsame Entwicklung diskursiver und praktikabler Technologien für die wertschöpfende Verwertung und das Design von Kunststoffen einbringen, um einen Einfluss auf die Industrie der Zukunft zu haben.

Aktuelle & vorherige Positionen

Seit 2023	Direktorin des Instituts für Nachhaltige Wasserwirtschaft (INW-2) am Forschungszentrum Jülich (50% Jülich, 50% RWTH)
Seit 2019	Max Planck Fellow am Max-Planck-Institut für Chemische Energiekonversion
2015 - 2020	Geschäftsführender Direktorin des Instituts für Chemische Technologie &
	Makromolekulare Chemie (ITMC), RWTH Aachen University/ Deutschland
Seit 2013	W3 Professorin für Heterogene Katalyse & Chemische Technologie, ITMC, RWTH Aachen University/ Deutschland
2010 - 2013	W2 Professorin für Nanostrukturierte Katalysatoren, ITMC, RWTH/ Deutschland
2008 - 2010	Gruppenleiterin, Max-Planck-Institut für Kohlenforschung, Mülheim/ Deutschland
2007	PostDoc bei Prof. Bert Weckhuysen. Universität Utrecht/Niederlande

Akademische Laufbahn

2003 - 2006	Promotion bei Prof. Schüth am Max-Planck-Institut für Kohlenforschung, Mülheim
1998 - 2003	Diplom in Chemieingenieurwesen, Technische Universität Dortmund/ Deutschland
2002	Austauschsemester, Chemieingenieurwesen der Lehigh University, Pennsylvania/USA

Forschungspreise und -stipendien

Forschungspreis der Werner Siemens Stiftung
Eastman Foundation Distinguished Lecturer in Catalysis
Mitglied der Nordrhein-Westfälischen Akademie der Wissenschaften und der Künste
Max-Planck-Fellow am Max-Planck-Institut für Chemische Energiekonversion
EFCATS Young Researcher Award
Exxon Mobil Science & Engineering Award

2017	DECHEMA-Preis für herausragende wissenschaftliche Beiträge, Dechema/Deutschland
2015	FAMOS für Familie (Auszeichnung für Familienfreundlichkeit der RWTH Aachen)
2011	Ausgewählt für das Capital-Projekt Junge Elite "Viermal vierzig unter vierzig"
2011	Auszeichnung "100 Frauen von morgen" der Initiative "Deutschland - Land der Ideen"
2010	Innovationspreis der Nordrhein-Westfälischen Akademie der Wissenschaften und der
	Künste
2010	Robert Bosch Juniorprofessur der Robert Bosch Stiftung/ Deutschland
2010	Jochen-Block-Preis der Deutschen Gesellschaft für Katalyse/ Deutschland
2010 - 2015	Mitglied der Jungen Akademie (Berlin-Brandenburgische Akademie/ Leopoldina)
2009	Preis für "Verständliche Wissenschaft" der GKSS, Helmholtz Gesellschaft/ Deutschland
2008	"Fast-Track-Stipendium" der Robert Bosch Stiftung/ Deutschland

Einbindung im Wissenschaftssystem

Seit 2018	Mitglied im Nationalen Komitee für Forschungsbauten/ Deutschland
Seit 2018	Mitglied in der GeCats-Kommission (Deutsche Gesellschaft für Katalyse)
Seit 2017	Auswahlkommission des Wöhlerpreises der GDCh
Seit 2016	Auswahlausschuss des DBU Promotionsprogramms (Deutsche Bundesstiftung Umwelt)
Seit 2016	Auswahlkomitee der Green & Sustainable Chemistry Challenge (Elsevier)
Seit 2015	Beirat des International Sustainable Chemistry Collaboration Centre ISC3
2015-2023	Associate Editor von Catalysis Science & Technology (RSC Journal)
Seit 2015	Intern. Beirat von Green Chemistry, ChemSusChem und ChemCatChem
2014-2022	Vorstand (stellvertretende Vorsitzende und 2018-2022 Vorsitzende) der Fachgruppe
	"Nachhaltige Chemie" der Gesellschaft Deutscher Chemiker (GDCh)
2014-2021	Wissenschaftlicher Beirat (2018-2021 stellvertretender Vorsitz), Leibniz-Institut für
	Katalyse (LiKat), Rostock, Deutschland
Seit 2012	Internationaler Beirat von ChemSusChem. (Wiley-Journal)
Seit 2012	Gutachterin für DFG, Alexander von Humboldt-Stiftung, Carl-Zeiss-Stiftung, etc.
2010	Wissenschaftlicher Beirat der "Energie-Ausstellung" auf der Insel Mainau im Rahmen der
	Lindauer Nobelpreisträgertagung 2010, Deutschland
2010	Botschafterin des Jahres der Energie 2010, einer Initiative des Bundesministeriums für
	Bildung und Forschung (BMBF)

Ausgewählte Projekte

Seit 2022	PI von Bio4MatPro (Kompetenzzentrum für die biologische Transformation von
	Materialwissenschaft und Produktionstechnik)
Seit 2021	PI des nationalen Wasserstoff-Leitprojekts H2Giga
Seit 2021	PI des Wasserstoff-Clusters4Future
Seit 2021	Core PI des NFDI4Cat (NFDI für Katalyse-bezogene Wissenschaften)
Seit 2019	Core PI des nationalen Exzellenzclusters "Fuel Science Center"
2019-2022	Koordinierungsausschuss und Clusterkoordinator des Kopernikus-Projekts P2X
2017-2018	PI des nationalen Exzellenzclusters "Maßgeschneiderte Kraftstoffe aus Biomasse"
2008-2012	PI des NRW-Forschungsclusters "NETZ - Nano Energie Technologie Zentrum"
Seit 2012	PI der europäischen Erasmus Mundus Graduiertenschule SinChem
2010-2015	PI des NRW-Forschungsclusters SusChemSys
2014-2020	Mitglied, FPS COST Action FP1306
Seit 2014	Mitglied der Strategischen Partnerschaften ACalNet (DAAD und BMBF)

Bedeutendste wissenschaftliche Beiträge

>230 Publikationen, >15000 Zitationen (Google Scholar), H-Index: 58 (Google Scholar)

1. S. Mürtz, J. Simböck, F. Zeng, M. Ghiasi, S. Schönebaum, U. Simon, F. M.F. de Groot, **R. Palkovits***, *EES Catal.* **2023**; Elucidating the validity of electronic characteristics of transition metal perovskites as descriptors bridging electro- and chemocatalysis. https://doi.org/10.1039/D3EY00206C *Identifikation übergreifender Deskriptoren für chemo- und elektrokatalytische Aktivität*

- 2. J. Kümper, J. Meyers, R. Sebers, N. Kurig, **R. Palkovits***, *Green Chem.* **2023**; Electrochemical transformation of D,L-glutamic acid into acrylonitrile. https://doi.org/10.1039/D3GC01045G *Erster elektrochemischer Weg zu dem sonst aus fossilen Rohstoffen gewonnenen Monomer Acrylnitril*
- 3. M. O. Haus, B. Winter, L. Fleitmann, **R. Palkovits***, A. Bardow*, *Green Chem.* **2022**; Making more from Bio-Based Platforms: Life Cycle Assessment and Techno-Economic Analysis of N Vinyl-2 Pyrrolidone from Succinic Acid. https://doi.org/10.1039/D2GC01219G
- LCA & techno-ökonomische Analyse einer Route von Biomasse zum Monomer Vinyl-Pyrrolidon
- 4. M. S. Lehnertz, J. B. Mensah, **R. Palkovits***, *Green Chem*. **2022**; Chemical recycling of polyhydroxy butyrate and polylactic acid over ruthenium supported on ceria. https://doi.org/10.1039/D2GC00216G *Effiziente Strategie für das katalytische Recycling von PLA und PHB*
- 5. J. Simböck, M. Ghiashi, S. Schönebaum, U. Simon, F. M. F. de Groot, **R. Palkovits***, *Nat. Commun.* **2020**; Electronic parameters in cobalt-based perovskite-type oxides as descriptors for chemocatalytic reactions. https://doi.org/10.1038/s41467-020-14305-0

Deskriptoren von kobaltbasierten Perowskiten zur Vorhersage der katalytischen Aktivität

- 6. J. Burre, D. Bongarth, S. Deutz, C. Mebrahtu, O. Osterthun, R. Sun, S. Völker, A. Bardow, J. Klankermayer, **R. Palkovits**, A. Mitsos, *Energy Environ. Sci.* **2021**; Comparing pathways for electricity-based production of dimethoxymethane as a sustainable fuel. https://doi.org/10.1039/D1EE00689D *Technologiebewertung H₂-effizienter Katalysepfade von CO₂ zu nachhaltigen Kraftstoffen*
- 7. J. Meyers, J. B. Mensah, F. J. Holzhäuser, A. Omari, C. C. Blesken, T. Tiso, S. Palkovits, L. M. Blank, S. Pischinger, **R. Palkovits**, *Energy Environ. Sci.* **2019**; Electrochemical conversion of a bio-derivable hydroxyacid to a drop-in oxygenate diesel fuel. https://doi.org/10.1039/C9EE01485C

 Entwurf einer neuartigen bio- und elektrochemischen Route von Biomasse zu nachhaltigen Kraftstoffen
- 8. **R. Palkovits**, S. Palkovits*, *ACS Catal.* **2019**; Using artificial intelligence to forecast water oxidation catalysts. https://pubs.acs.org/doi/abs/10.1021/acscatal.9b01985 *Beispiele für das Potenzial von ML bei der Vorhersage vielversprechender Elektrokatalysatoren*
- 9. P. J. C. Hausoul*, C. Broicher, R. Vegliante, C. Göb, **R. Palkovits***, *Angew. Chem. Int. Ed.* **2016**; Solid Molecular Phosphine Catalysts for Formic acid Decomposition in the Biorefinery. https://doi.org/10.1002/anie.201510681

Neuartiges Single-Site-Katalysatorkonzept für effiziente Umsetzungen in der Bioraffinerie

10. I. Delidovich, P. J. C. Hausoul, L. Deng, R. Pfützenreuter, M. Rose, **R. Palkovits***, *Chem. Rev.* **2016**; Alternative Monomers from lignocellulose and their application for polymer production. https://doi.org/10.1021/acs.chemrev.5b00354

Übersicht neuartiger Monomere aus Lignocellulose und die damit verbundenen nachhaltigen Polymere

Patente

- > 30 Patentanmeldungen; folgend Beispiele zur Katalysatorentwicklung und zu neuen Biomasserouten:
- M. Rose, R. Pfützenreuter, R. Palkovits, Patent (2014) PCT/EP2014/065556: Verfahren zur Aminierung von Isosorbid
- R. Palkovits, M. Rose, K. Schute, Patent DE102015001407.2; WO2016/124170: Isolation of organic dicarboxylic acids by adsorption on hydropobic porous materials
- C. Glotzbach, S. Schirrmeister, K. Beine, P. Hausoul, R. Palkovits, Patent (2017) DE 102017204322: Verfahren zur chemischen Umsetzung von Zuckern oder Zuckeralkoholen zu Glykolen
- K. Schute, P. J.C. Hausoul, R. Palkovits; Patent (2017) EP3415500B1: Verfahren zur Herstellung von Methylpyrrolidonen
- X. Wang, P. J. C. Hausoul, R. Palkovits, Patent (2019) DE102019105105A1 Verfahren zur Herstellung von 1,2-Propandiol
- M. Muertz, M. Lehnertz, J. Kuemper, S. Palkovits, R. Palkovits, Patent application (2023) DE 10 2023 124 897.9