

Prof. Dr.-Ing. Matthias Wessling

(*10.03.1963, married, two children: 2000, 2004) RWTH Aachen University Lehrstuhl für Chemische Verfahrenstechnik Chair of Chemical Process Engineering Forckenbeckstraße 51, D-52074 Aachen Phone: +49 241 80 95470, E-mail: matthias.wessling@avt.rwth-aachen.de ORCID: 0000-0002-7874-5315 URL for web site:http://www.avt.rwth-aachen.de/

https://scholar.google.com/citations?user=ldEjzsgAAAAJ&hl=de

Working group vision and contribution to catalaix

The main focus of the Chair of Chemical Process Engineering (AVT.CVT) at RWTH Aachen University is the development and design of reactors for various applications. In particular, the optimization of flow conditions influences the effective transport of reactants and products in the reactor and allows to maximize the efficiency of the catalysts and thus the reaction. We have applied our reactor concepts and designs to polymerization and depolymerization reactors in chemocatalytic, electrochemical and biological reactors. The materials we synthesize range from classical polymers to interactive materials such as microgels and membranes, for the synthesis of which we have developed dedicated equipment in the past. We accompany this practical development with modeling from the micro scale of interfaces up to the macro scale of reactors and the integration into process chains.

We intend to use these competences in tailor-made reactor concepts for the success of Catalaix and make a decisive contribution to it. Our reactors will make it possible to integrate novel catalysts and reactions into a continuous process and thus enable circular value chains in the chemical industry.

Current & Previous Positions

Since 2018	Vice-Rector Research and Structure at RWTH Aachen University
Since 2010	Alexander-von-Humboldt Professor at Chair of Chemical Process Engineering,
	RWTH Aachen University
Since 2010	Member Scientific Board DWI at Leibniz -Institute for Interactive Materials, Aachen
2015 - 2018	Vice-Director at DWI Leibniz-Institute for Interactive Material Science, Aachen
2014 - 2018	Vice-Dean Strategy at Faculty of Mechanical Engineering RWTH Aachen University
2014	Visiting professor at Stanford University, USA
2007 - 2009	Dean Faculty of Science and Technology at University of Twente, Netherlands
2007	Visiting professor at Bio-X at Stanford University, USA
1999 - 2009	Full Professor at Membrane Science and Technology, University of Twente, Netherlands
1997 - 1999	Department Head Separation Process Engineering at Akzo Nobel Chemicals Research,
	Netherlands
1995 - 1997	Assistant Professor at University of Twente, Netherlands
1993 - 1994	Senior Research Scientist at MTR Inc, CA, USA

Education	
1989 - 1994	Doctor of Engineering in chemical process engineering at University of Twente (Professor Smolders)
1989	Diploma of Chemical Engineering at Technical University Dortmund and University of Cincinnati, OH, USA
1983 - 1987	Studies chemical engineering at Technical University Dortmund

Fellowships and Awards

2019	Prizewinner of the Gottfried Wilhelm Leibniz Prize
2016	ERC Advanced Investigator Grant ConFluReM
2010	Alexander von Humboldt-Professor Award
1994	Best Ph.D. Thesis Award, European Membrane Society

Contributions to the science system

Since 2022	Member of the German National Academy of Sciences Leopoldina
Since 2020	Member of the Advisory Board of the University of Twente
Since 2020	Member of the Scientific Advisory Board of Leibniz Insitut für Polymerforschung Dresden e.V.
Since 2019	Member of the Scientific Advisory Board of Max Planck Institute for Complex Technical Systems in Magdeburg Editorial Board "Scientific Reports" , open Access Journal of the Nature Publishing Group;
	expertise area: Chemical Physics

Selected Projects	
2023 - 2026	APRiCOT: Advanced Bipolar Membranes for Energy and Electrodialysis Technology (DFG)
2022 - 2026	TriggerINK : Development of materials and strategies for articular cartilage treatment (WSS)
2022 - 2023	Forschungstransfer BioThrust : Membrane-based gassing solutions for bioreactors (BMWK)
2022 - 2023	Umfassende Auslegung eines membranbasierten Polymerisationsreaktors für Gas- Flüssig-Feststoff Reaktionssysteme (DFG)
2021 - 2025	DERIEL: Elucidating degradation in PEM water electrolysis (BMBF)
2021 - 2025	PrometH2eus: Additive manufacture of anodes for oxygen evolution reaction (BMBF)
2021 - 2025	SEGIWA: Scalable fabrication of membrane electrode assemblies (BMBF)
2021 - 2024	iNEW2.0: Novel electrolysis processes for power-to-X value chains (BMBF)
2021 - 2024	ECDeHalo: Catalyzed electrochemical degradation of halogenated pollutants (IGF)
2019 - 2026	EXC2186 Fuel Science Center : Electrodes, reactors and integrated processes for electrochemical conversions (DFG)
2019 - 2024	SFB985: Functional microgels and microgel Systems (DFG)
2019 - 2022	ELECTRA: Infrastructure project for industrial electrochemistry (EU EFRE)

Most important scientific contributions

F. Wiesner, **M. Wessling** et al., 2023, Adv Eng Mater, DOI: 10.1002/adem.202200986. (3D intertwined electrode pairs for improved mass transport and high electrode surface areas)

- T. Harhues, **M. Wessling** et al., 2023, ACS Sustainable Chem. Eng., DOI: 10.1021/acssuschemeng.3c01403. (Integrated dehydration of fructose to HMF and oxidation to FDCA)
- J. Vehrenberg, M. Wessling et al., 2023, Electrochemistry Communications, DOI:

10.1016/j.elecom.2023.107497. (Paired electrochemical GOR as replacement for OER in electrochemical CO 2R)

- M. Mohseni, **M. Wessling** et al., 2022, Chemical Engineering Journal, DOI: 10.1016/j.cej.2022.137006. (One-pot synthesis of binder-free HPCs as electrodes for heterogeneous electro-Fenton)
- N. Weber, **M. Wessling** et al., 2023, Adv. Mater. Technol.DOI: 10.1002/admt.202300720. (Additive manufacture of gas diffusion electrodes for electrochemical CO2 reduction)
- R. G. Keller, M. Wessling et al., 2021, Catal. Today, DOI: 10.1016/j.cattod.2020.05.059. (Depolymerization of cellobiose to glucose via an electro-Fenton process coupled with nanofiltration for enhanced conversion)
- H. J. M. Wolff, M. Wessling et al., 2018, ACS applied materials & interfaces, DOI: 10.1021/acsami.8b06920. (Continuous precipitation polymerization of thermoresponsive mircogels)
- J. Lölsberg, **M. Wessling** et al., 2017, ChemElectroChem, DOI: 10.1002/celc.201700662. (3D-printed flow through electrode mixers with improved mass transport properties)
- S. Stiefel, **M. Wessling** et al., 2016, Green Chem., 18, DOI: 10.1039/C6GC00878J. (Controlled depolymerization of lignin at ambient pressure and room temperature)
- S. Stiefel, **M. Wessling** et al., 2015, Electrochemistry Communications, DOI: 10.1016/j.elecom.2015.09.028. (Electrochemical oxidative depolymerization of lignin without toxic solvent and expensive catalysts)

Patents

Y. Gendel, **M. Wessling**, O. David: Microtubes made of carbon nanotubes, Patent 20160301084, Disclosure 13.10.2016. (CNT microtubes as electrodes or tubular membranes)

- **M. Wessling**, Y. Gendel, O. David: Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein, Patent 20160293963, Disclosure 06.10.2016. (Oxygen-vanadium redox flow battery with vanadium electrolyte and dispersed carbon particles)
- S. S. Hosseiny, M. Saakes, **M. Wessling**: Electro-catalyst, Patent 20130216923, Disclosure 22.08.2013. (Iridium-based electrocatalyst for a bifunctional air electrode)
- M. Wessling, D. Stamatialis, K. K. Kopec, S. M. Dutczak: Hollow fibre membrane, Patent 20130192459, Disclosure 01.08.2013. (Production of a hollow fiber membrane with support and separation layer)
- G.-H. Koops, M. E. Avramescu, Z. Borneman, R. Kiyono, **M. Wessling**: Functional porous fibres, Patent 7935418, Disclosure 03.05.2011. (Extruded porous polymer fibers with active particles)
- J. de Boer, C. A. Van Blitterswijk, H. V. Unadkat, D. Stamatialis, B. J. Papenburg, **M. Wessling**: High throughput screening method and apparatus for analysing interactions between surfaces with different topography and the environment, Patent 20110009282, Disclosure 13.01.2011. (Method and apparatus for screening surface-environment interactions)
- J. H. Balster, D. Stamatialis, **M. Wessling**: Ion-permeable membrane and the production thereof, Patent 20100065490, Disclosure 18.03.2010. (Ion permeable membrane with profiled surface)
- P. Bongartz, M. Meyer, **M. Wessling**: Integrale begasungs- und rühreinheit für gas-flüssig-reaktoren, Patent WO2021152128A1, Pending 29.01.2021. (Bubble-free entry of process gas into liquid)